- Blog
- Complete Kimi K2 Developer Guide: From API Integration to Production Deployment
Complete Kimi K2 Developer Guide: From API Integration to Production Deployment
Developer Support Teamon 8 months ago
Complete Kimi K2 Developer Guide: From API Integration to Production Deployment
Kimi K2, as a next-generation agentic AI model, provides powerful API services for developers. This article provides a complete usage guide from basic integration to production deployment.
Quick Start
API Key Acquisition
- Visit Moonshot AI Open Platform
- Register an account and complete identity verification
- Create API key in the console
- Top up your account (minimum charge ¥100)
Basic Usage Examples
Python Example
import requests
import json
def call_kimi_k2(prompt, api_key):
url = "https://api.moonshot.cn/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "kimi-k2-0711-preview",
"messages": [
{"role": "user", "content": prompt}
],
"temperature": 0.7,
"max_tokens": 2048
}
response = requests.post(url, headers=headers, json=data)
return response.json()
# Usage example
api_key = "sk-your-api-key"
result = call_kimi_k2("Please write a Python quicksort algorithm", api_key)
print(result["choices"][0]["message"]["content"])
Node.js Example
const axios = require('axios');
async function callKimiK2(prompt, apiKey) {
const url = 'https://api.moonshot.cn/v1/chat/completions';
const headers = {
'Authorization': `Bearer ${apiKey}`,
'Content-Type': 'application/json'
};
const data = {
model: 'kimi-k2-0711-preview',
messages: [
{ role: 'user', content: prompt }
],
temperature: 0.7,
max_tokens: 2048
};
try {
const response = await axios.post(url, data, { headers });
return response.data.choices[0].message.content;
} catch (error) {
console.error('API call failed:', error);
throw error;
}
}
// Usage example
callKimiK2("Create a React component to display user list", "sk-your-api-key")
.then(result => console.log(result))
.catch(error => console.error(error));
Advanced Features
Tool Calling
One of Kimi K2's core advantages is powerful tool calling capability:
def advanced_tool_calling(prompt, api_key):
url = "https://api.moonshot.cn/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Define available tools
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather information for specified city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "City name"
}
},
"required": ["city"]
}
}
},
{
"type": "function",
"function": {
"name": "search_web",
"description": "Search internet information",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search keywords"
}
},
"required": ["query"]
}
}
}
]
data = {
"model": "kimi-k2-0711-preview",
"messages": [
{"role": "user", "content": prompt}
],
"tools": tools,
"tool_choice": "auto", # Let model autonomously choose whether to use tools
"temperature": 0.3
}
response = requests.post(url, headers=headers, json=data)
return response.json()
Streaming Response
For long content generation, streaming response is recommended:
import sseclient
def stream_response(prompt, api_key):
url = "https://api.moonshot.cn/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "kimi-k2-0711-preview",
"messages": [
{"role": "user", "content": prompt}
],
"stream": True
}
response = requests.post(url, headers=headers, json=data, stream=True)
client = sseclient.SSEClient(response)
for event in client.events():
if event.data != "[DONE]":
chunk = json.loads(event.data)
if chunk["choices"][0]["delta"].get("content"):
yield chunk["choices"][0]["delta"]["content"]
Best Practices
1. Prompt Engineering Optimization
Agentic Task Prompt Design
def create_agent_prompt(task_description, tools_available):
return f"""You are an intelligent assistant that needs to complete the following task:
{task_description}
Available tools:
{', '.join(tools_available)}
Please follow these steps:
1. Analyze task requirements
2. Create execution plan
3. Use tools step by step to complete the task
4. Summarize execution results
Start execution:"""
Programming Task Prompt Optimization
def create_coding_prompt(requirements):
return f"""Please write code according to the following requirements:
{requirements}
Requirements:
1. Code must be runnable
2. Include necessary error handling
3. Add appropriate comments
4. Follow best practices
5. Provide usage examples
Please first explain your implementation approach, then provide complete code:"""
2. Performance Optimization Strategies
Batch Processing
async def batch_process(prompts, api_key, max_concurrent=5):
import asyncio
import aiohttp
semaphore = asyncio.Semaphore(max_concurrent)
async def process_single(session, prompt):
async with semaphore:
url = "https://api.moonshot.cn/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "kimi-k2-0711-preview",
"messages": [{"role": "user", "content": prompt}]
}
async with session.post(url, headers=headers, json=data) as response:
result = await response.json()
return result["choices"][0]["message"]["content"]
async with aiohttp.ClientSession() as session:
tasks = [process_single(session, prompt) for prompt in prompts]
results = await asyncio.gather(*tasks)
return results
Production Environment Deployment
1. Environment Configuration
Docker Deployment
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
ENV KIMI_API_KEY=""
ENV REDIS_URL="redis://redis:6379"
ENV LOG_LEVEL="INFO"
EXPOSE 8000
CMD ["gunicorn", "--bind", "0.0.0.0:8000", "--workers", "4", "app:app"]
Cost Optimization Recommendations
1. Token Usage Optimization
- Streamline prompts, remove unnecessary descriptions
- Use system messages to reduce repetitive content
- Set reasonable max_tokens parameters
2. Caching Strategy
- Cache similar query results
- Use Redis or Memcached to store common responses
- Set reasonable cache expiration times
3. Batch Processing
- Combine multiple small tasks into one large task
- Use async requests to improve throughput
- Implement request queue management
Conclusion
Kimi K2 provides powerful and economical AI capabilities for developers. Through reasonable integration strategies, performance optimization, and monitoring mechanisms, stable and reliable AI applications can be built. As the model continues to optimize and the ecosystem improves, Kimi K2 will become an important component in developers' toolkits.